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a b s t r a c t

Since the important physicochemical data for chloronaphtalenes (PCNs) are still scarce, we have predicted
water solubility (log S) of all 75 congeners with the Quantitative Structure–Property Relationship (QSPR)
scheme. The values of log S, predicted by the most efficient model, varied from 0.01 to 1660 �g dm−3

(2.85 × 10−11–1.02 × 10−5 mol dm−3), depending on the number of chlorine atoms present in the molecule
and the substitution pattern. We found that the main factor determining relative differences in solubility
between the congeners is the solvent accessible volume related to the cavitation process occurring in the
solvent. The results are presented as a case study of QSPR modeling for those Persistent Organic Pollu-
tants (POPs) that exist as families of congeners. By investigating the impact of (i) the way of the molecular
descriptors’ calculation, (ii) the size of applied database and (iii) chemometric method of modeling (Mul-
tiple Linear Regression, MLR, and/or Partial Least Squares regression, PLS) on the quality of the models we
proposed general recommendations for dealing with congeners. We found that the combination of the
B3LYP functional with 6-311++G(d,p) basis set was the most optimal technique of the molecular descrip-

tors’ calculation for congeners when comparing with semi-empirical PM3, ab initio Hartee–Fock (HF), and
Møller–Pleset 2 (MP2) method carried out with different-size basis sets. Moreover, the model developed
with a larger and more general database that includes chloronaphthalenes, polychlorinated dibezno-p-
dioxins, furans and biphenyls predicted the values of log S for PCNs noticeable worse than the model
calibrated only on PCNs. In the later case it was possible to obtain satisfactory results by employing even
the simplest MLR method and only one molecular descriptor. The values of log S were also calculated with

O-RS
the WSKOWIN and COSM

. Introduction

Solubility in water plays one of the most important roles among
any physicochemical parameters that characterize a chemical

ollutant. It influences behavior of the chemical compound in many
hysical and biological processes, involving information on the abil-

ty of the compound to take part in metabolic processes as well as
ssessing its environmental persistence, transport and fate [1].

Polychlorinated naphthalenes (chloronaphthalenes, PCNs, CNs)
orm a set of 75 two-ringed aromatic compounds, containing from
ne to eight chlorine atoms per molecule in different positions (con-
eners). CNs were commercially synthesized between 1910s and
970s and used in many technical applications. All CN congeners are
lanar and some of them (CNs nos. 48, 54, 66, 67, 68, 69, 70, 71, 73,

nd 75) belong to the group of so-called ‘dioxin-like’ chemicals due
o their contribution to the aryl hydrocarbon receptor-mediated

echanism of toxicity. Their confirmed persistence in the natural
nvironment, tendency to be accumulated in biota and extensive

∗ Corresponding author. Tel.: +48 58 523 5451; fax: +48 58 523 5472.
E-mail addresses: puzi@qsar.eu.org, puzi@pcb.chem.univ.gda.pl (T. Puzyn).

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2009.05.079
models as the reference techniques and then compared to our results.
© 2009 Elsevier B.V. All rights reserved.

toxicity are the reasons that chloronaphthalenes are concerned as
one of the major groups of hazardous environmental pollutants
[2–4].

According to the results of the global atmospheric passive sam-
pling study [5], the total concentration of CN congeners in the
atmosphere measured between December 2004 and March 2005
ranged from the levels below detection limit to 32 pg/m3 with a geo-
metric mean of 1.6 pg/m3. Significant levels of PCNs were noticed
primarily in the northern hemisphere with the highest concen-
trations in the urban, industrial areas of Eastern Europe (Czech
Republic, Poland) and China. Elevated levels were observed also
at the urban sites of Turkey, Kuwait and Philippines. At Arctic sites
the total concentration of PCNs ranged between 1 and 8 pg/m3, con-
firming the long-range transport potential of these compounds. The
most frequently detected congeners were CN nos. 24, 33/34/37, 47,
27/30/39, 52/60, 50, 51, 54, 66/67, and 75. Interestingly, PCN air con-
centrations are declining more slowly than expected, taking into

account fact that the technical mixtures of chloronaphthalenes are
no longer widely used. This could be attributed to continued emis-
sion of PCNs from various combustion sources (waste incineration,
domestic heating, etc.). Thus, the problem of PCNs is still up-to-date
and should be further studied.

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:puzi@qsar.eu.org
mailto:puzi@pcb.chem.univ.gda.pl
dx.doi.org/10.1016/j.jhazmat.2009.05.079
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Table 1
Molecular descriptors calculated in the study.

No. Symbol Name Unit Method of calculation

1. nCl The total number of chlorine atoms – Manually
2. nClp1 The number of chlorine atoms in the first aromatic ring – Manually
3. nClp2 The number of chlorine atoms in the second aromatic ring – Manually
4. D The dipole moment Debye Gaussian 03, DFT
5. A Mean polarizabilitya Å3 Gaussian 03, DFT
6. MaxQ+ The maximal positive partial Mulliken’s charge – Gaussian 03, DFT
7. MaxQ- The maximal negative partial Mulliken’s charge – Gaussian 03, DFT
8. HOMO The energy of the highest occupied molecular orbital Hartree Gaussian 03, DFT
9. LUMO The energy of the lowest unoccupied molecular orbital Hartree Gaussian 03, DFT

10. Hard The molecular hardnessb Hartree Gaussian 03, DFT
11. IP The adiabatic ionization potential eV Gaussian 03, DFT
12. EA The adiabatic electron affinity eV Gaussian 03, DFT
13. Et The total energy of the molecule Hartree Gaussian 03, DFT
14. Cv The heat capacity (for v = const) kJ mol−1 Gaussian 03, DFT
15. S Entropy J mol−1 K−1 Gaussian 03, DFT
16. SASw The solvent accessible molecular surface area in the waterc Å2 Gaussian 03, DFT
17. SAVw The solvent accessible molecular volume in the waterc Å3 Gaussian 03, DFT
18. TEESolw The total electrostatic energy of solvation in the waterc Hartree Gaussian 03, DFT
19. PolSSw The polarized solute–solvent interaction energy in the waterc kJ mol−1 Gaussian 03, DFT
20. CEw The cavitation energy in the waterc kJ mol−1 Gaussian 03, DFT
21. DEw The dispersion energy in the waterc kJ mol−1 Gaussian 03, DFT
22. TNEw The total non-electrostatic energy of solvationc kJ mol−1 Gaussian 03, DFT
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a Mean polarizability (A) was calculated as a mean eigenvalue taken from diagon
b Hardness (Hard) was computed as a half of the HOMO–LUMO energy difference
c Calculations in solute (water) simulated by the Conductor-like Screening MOde

Although data on water solubility of CN congeners are of vital
mportance in environmental modeling, such information is scarce.
he experimental data are available only for selected 15 CN con-
eners [6]. These, however, incomplete data have been cited many
imes in the scientific reports devoted to risk assessment of chloron-
phthalenes [7,8]. Analyzing the reports we pointed out that the
rediction of water solubility for the remaining 60 compounds from
his group would be imperative, and it would fill significant gaps in
he existing data. If the complete data exist, it would be possible to

odel environmental transport and fate not only for 15, but also
or all 75 congeners.

Problems with lacking data are also very common for similar
ongeneric compounds, such as polychlorinated and polybromi-
ated dibenzo-p-dioxins, dibezofurans, diphenyl ethers, tiophenes,
tc. Specificity of this groups results from a relatively small
ariability in both physicochemical and molecular parameters
haracterizing individual members of the congeneric families. As

consequence, computational predictions for such compounds
equire very accurate techniques that are able to express these
mall differences among the congeners, especially containing
he same number of chloro- or bromo-substituents (i.e., 1,2-
ichloronaphthalene and 1,4-dichloronaphthalene).

The efficient way to obtain a complete set of the data, without
ecessity of performing expensive laboratory experiments is appli-
ation of the Quantitative Structure–Property Relationship (QSPR)
echniques, including advanced quantum chemical, combinatorial
nd chemometric methods [9–12].

The main purpose of this study was to predict reliable values of
ater solubility for all chloronaphthalene congeners. However, we

lso wanted to present the results as a case study and discuss some
ethodological aspects interesting for QSPR modelers dealing with

he congeneric compounds. By investigating the impact of (i) the
ay of the molecular descriptors’ calculation, (ii) the size of applied
atabase and (iii) the chemometric methods of modeling (Multi-
le Linear Regression, MLR, and/or Partial Least Squares regression,

LS) on the quality of the models we developed some more general
ecommendations for dealing with congeners. We have confirmed
he hypothesis that in the case of such congeneric compounds
s chloronaphthalenes, the application of relatively simple local
SPRs, even constructed on the very limited, but homogenous
on of the polarizability tensor.

MO).

experimental database, could provide more precise results than
comprehensive and ‘universal’ models.

2. Materials and methods

In the first step, the structures of all possible CN congeners were
combinatorially generated with the ConGENER package [13]. Then,
the molecular coordinates of the structures were optimized at the
Density Functional Theory (DFT) level, using B3LYP functional and
6-311++G(d,p) basis set [14–17]. Molecular geometry of each con-
gener was optimized three times in vaccuo: (i) as a neutral molecule,
(ii) a corresponding cation and (iii) a corresponding anion. In addi-
tion, each molecule (as a neutral molecule) was optimized in water
simulated by the Conductor-like Screening MOdel (COSMO) [18].
All quantum-mechanical calculations were carried out using the
Gaussian 03 package [16].

In the second step, 22 molecular descriptors were either directly
extracted from the Gaussian output files or calculated manually
(Table 1). After obtaining the descriptors, additional calculations
by Hartree–Fock (HF), Møller–Pleset with the 2nd order corrections
(MP2), and semi-empirical PM3 methods (for details see [17]) were
additionally performed to evaluate the influence of the calculation
method and the basis set on the descriptor values. Because of the
limited number of experimental data, this influence was examined
based on the dipole moments for mono- and dichloronaphthalenes
taken from a database by Eucken and Hellwege [19]. The dipole
moments seem to be a very good measure for such comparison,
because they arise from electron distribution and they are more
sensitive to molecular geometry than most the other properties.
Moreover, the dipole moments from ab initio (HF) and DFT (B3LYP)
calculations can be compared to the semi-empirical results more
reliable than the energies, because in the case of the semi-empirical
methods, the energies are related to the heat of formation [17].

A compilation of all available experimental data on water sol-
ubility of PCNs and critical evaluation of those data preceded the

next step of modeling. As already have been mentioned, experi-
mentally derived values of water solubility were available only for
15 CN congeners (20% of all congeners) [6]. They ranged from 0.08 to
2870 �g dm−3 (2.0 × 10−10–1.8 × 10−5 mol dm−3). Those congeners,
for which the experimental data had been available (Set 1), were
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Table 2
Comparison of the experimental and calculated values of the dipole moment D (in Debyes) for mono- and dichloronaphthalenes.

CN congener Exp.a Calculated

HF/6-31G(d) MP2/6-31G(d) B3LYP/6-31G(d) B3LYP/6-311++G(d,p) PM3

D D Res. D Res. D Res D Res. D Res.

1-Chloronaphthalene 1.59 2.07 0.48 1.79 0.20 1.85 0.26 1.79 0.2 0.90 −0.69
2-Chloronaphthalene 1.72 2.36 0.64 2.07 0.35 2.13 0.41 2.04 0.32 1.07 −0.65
1,2-Dichloronaphthalene 2.47 3.38 0.91 2.94 0.47 2.99 0.52 2.85 0.38 1.45 −1.02
1,3-Dichloronaphthalene 1.78 2.55 0.77 2.25 0.47 2.30 0.52 2.2 0.42 1.15 −0.63
1,4-Dichloronaphthalene 0.48 0.75 0.27 0.75 0.27 0.73 0.25 0.69 0.21 0.37 −0.11
1,5-Dichloronaphthalene 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 0.00
1,6-Dichloronaphthalene 1.44 1.90 0.46 1.59 0.15 1.66 0.22 1.59 0.15 0.83 −0.61
1,7-Dichloronaphthalene 2.55 3.41 0.86 2.93 0.38 3.01 0.46 2.91 0.36 1.48 −1.07
1,8-Dichloronaphthalene 2.82 3.82 1.00 3.24 0.42 3.33 0.51 3.21 0.39 1.59 −1.23
2,3-Dichloronaphthalene 2.55 3.65 1.10 3.12 0.57 3.20 0.65 3.01 0.46 1.60 −0.95
2,6-Dichloronaphthalene 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2,7-Dichloronaphthalene 1.53 2.06 0.53 1.84 0.31 1.86 0.33 1.8 0.27 0.91 −0.62
M 0
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a Experimental data taken from [19].

ivided into two subsets: the training subset containing 10 con-
eners and the validation subset with 5 compounds. The splitting
rocedure was designed to assure that there are the high, low and
edium values of water solubility represented in each subset. The

alidation compounds were randomly selected from those charac-
erized by the values of log S below 1.0 (2 congeners), log S between
.0 and 3.0 (2 congeners), and log S over 3.0 (1 congener). The
emaining congeners were used as the training set.

In the same way, we have collected the solubility data for
wider set of structurally similar, chloroaromatic, congeneric

ompounds, known as environmental pollutants (Set 2). They
ere: previously characterized chloronaphthalenes (15 congeners),
olychlorinated biphenyls, PCBs (15 congeners), polychlorinated
ibenzo-p-dioxins, PCDDs (15 congeners), and polychlorinated
ibenzofurans, PCDFs (7 congeners) [20]. The values of water
olubility in this extended database varied between 7.4 × 10−5

nd 7079 �g dm−3 (1.61 × 10−13–4.59 × 10−5 mol dm−3). The com-
ounds from Set 2 were also split into the training subset and the
alidation subset. The molecular structures of these compounds
ere optimized with the same quantum-mechanical methods as

pplied to PCNs and, finally, the same set of 22 descriptors as derived
efore was calculated.

Then, based on the descriptors and the experimental data, we
eveloped QSPR models for predicting water solubility of PCNs. To
e able to investigate the influence of the model’s domain on the
rediction error, we simultaneously constructed individual mod-
ls with use of the compounds from Set 1 and Set 2. Moreover, in
ach case we used two different chemometric approaches: Multi-
le Linear Regression (MLR) method, and Partial Least Squares (PLS)
egression to determine the influence of the modeling technique on
he output. The same training and validation subsets were used in
ach model in order to make the comparison between the models
ore reliable. MLR and PLS are both the standard techniques and

heir detailed characteristics are described elsewhere [21]. In the
ase of MLR, we arbitrary selected the best model, after consider-
ng possible solutions and verifying orthogonality of the descriptors
o avoid the known problem of yielding a very good MLR model just
y chance when a large number of ‘screened’ descriptors are cal-
ulated [22]. The most optimal set of the descriptors for PLS were
elected by employing the standard Genetic Algorithm (GA) imple-
ented in the PLS Toolbox 4.1 [23]. Before modeling, all descriptors

ere autoscaled (transformed to mean equal 0 and variance equal

) for equalizing the impact of each variable in the models.
The obtained QSPR models were validated according to the

est practice and the five OECD recommendations [24,25]. These
golden rules’ state that the model should be associated with (i)
.30 – 0.34 – 0.26 – −0.63

a defined endpoint; (ii) an unambiguous algorithm; (iii) a defined
applicability domain; (iv) appropriate measures of goodness-of-fit,
robustness and predictivity; and (v) a mechanistic interpretation, if
possible.

The applicability domains of the models were explored by use
of the Williams plots. The plots played a double role. Firstly, they
described the impacts of the objects on models by the values of
the objects’ leverages (diagonal elements of the Hat or Influence
Matrix H = X(XTX)−1XT). Secondly, they presented the Euclidean
distances of the compounds to the models measured by the jack-
knifed (standardized and cross-validated) residuals. The leverage
(h) greater than the warning h* = 3p′/n (p′: the number of variables
plus one; n: the number of compounds in the training set) sug-
gested that the compound was very influential on the model, while
the residual standard deviations R.S.D. > 2.5 classified the com-
pound as an outlier. The robustness of each model was expressed
by the cross-validated (leave-one-out technique, LOO) validation
coefficient (Q2

LOO) and the root mean square errors of LOO cross-
validation (RMSECV). The predictive abilities of the models were
compared to each other according to the values of the external
validation coefficients (Q2

ext) and the root means square error of
prediction in the validation sets (RMSEP) [24,26]. Successfully val-
idated QSPR models with confirmed predictive abilities were used
to predict water solubility for all 75 CN congeners. All QSPR calcu-
lations were performed in the MATLAB 7.6 environment [27].

In addition, the quality of the QSPR results was verified by
comparing the predictions to the results obtaining with use of
other common computational techniques. We performed reference
calculations with the WSKOWIN [28] and the COSMO-RS [29,30]
models.

WSKOWIN is a software package recommended by U.S. Envi-
ronmental Protection Agency. It calculates water solubilities from
n-octanol/water partition coefficients, molecular weights and melt-
ing points using two QSPR models. These models were developed
based on 1450 training compounds. The models were also exter-
nally validated on 817 compounds. The authors reported the values
of standard deviation and absolute mean error of prediction as 0.615
and 0.480 log units, respectively [31].

Calculations in COSMOtherm package are based on the COSMO-
RS theory by Klamt and co-workers [30]. This theory was used
to develop quantum-mechanical COnductor-like Screening Model,

by putting solute and solvent in a perfect conductor and cal-
culating the polarization charge densities for both. This way of
calculation allows determining the chemical potentials for the
solute and the solvent and – finally – solubility of the solute. It
is worth noting, that the initial step in the COSMOtherm algorithm
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Table 3
Description of the QSPR models developed in this study.

MLR PLS

Set 1
log S = 11.6(±0.8) − 0.015(±0.001) SAVw PLS model with 1 latent vector (8 descriptors: nClp1, HOMO, Hard, Et, SASw, SAVw, DEw, TNEw)

n = 10 s = 0.324 F1,8 = 153
nval = 5 Intercept: p < 0.001, t = 12.35

SAVw: p < 0.001, t = 14.26

Goodness-of-fit: R2 = 0.950, RMSECa = 0.290 Goodness-of-fit: R2 = 0.947, RMSEC = 0.298
Robustness: Q2

LOO = 0.897, RMSECV = 0.418 Robustness: Q2
LOO = 0.947, RMSECV = 0.383

Predictivity: Q2
ext = 0.933, RMSEP = 0.260 Predictivity: Q2

ext = 0.966, RMSEP = 0.185

Set 2
n = 34 – PLS model with 4 latent vectors (8 descriptors: nClp1, HOMO, Hard, Et, SASw, SAVw, DEw, TNEw)
nval = 18

Goodness-of-fit: R2 = 0.941, RMSEC = 0.492
Robustness: Q2

LOO = 0.941, RMSECV = 0.597
Predictivity: Q2

ext = 0.894, RMSEP = 0.607

a The values of RMSEP, RMSECV, and RMSEP were calculated according to the formula:

RMSEC =

√∑n
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here yobs: observed (experimental) value of log S, ypred: predicted value of log S, yc

s quantum-mechanical COSMO calculation—the same procedure
hat we performed generating the matrix of molecular descriptors
or QSPR.

. Results and discussion

.1. Molecular descriptors

The calculated values of the molecular descriptors were charac-
erized by the normal distribution, without the presence of outliers.
ecause the triple standard deviations were always greater than the
rrors of computation, we assumed that all descriptors would be
ble to reliably characterize molecular differences amongst CNs.

As mentioned, the dipole moments were utilized for compari-
on of quality of quantum-mechanical geometry optimization. Both
F and PM3 methods provided the poorest description of geom-
try and – in consequence – structural differences between the
ongeners (Table 2). We do not recommend application of these
pproaches. We observed that for the considered compounds the
ery fast B3LYP method in conjunction with the triple zeta basis
et gave even slight better results than calculations at the costly
long time of calculations) MP2 level with the double zeta basis set.
herefore, DFT (B3LYP) methods might be recommended for similar
SPR studies.

.2. QSPR modeling

By applying the QSPR methodology it was possible to develop
nly three statistically satisfying models, namely: MLR model for
et 1, PLS model for Set 1, and PLS model for Set 2. The forth possi-
le one (MLR model for Set 2) was characterized by insufficient
oodness-of-fit, thus, it was eliminated from further considera-

ions.

When analyzing goodness-of-fit, robustness and predictivity of
oth models for the narrow set (Set 1) one can conclude that the
ifferences are not very large (Table 3). However, the PLS model
redicts slightly better than the MLR-based one. This might be
cross-validated value of log S.

mechanistically explained when regarding the theory of the dis-
solving process. The MLR utilizes only one descriptor (SAVw) which
is directly related to the cavitation. Formation of ‘caves’ in the sol-
vent (cavitation) plays the critical role in dissolving of such highly
hydrophobic compounds as PCNs [1]. That is why we were able
to obtain a satisfied QSPR model with the only one descriptor. It
is worth noting that the solvent accessible volume, in the case of
chloronaphthalenes, depends mainly on the chlorination degree—it
increases from mono- to octachloronaphthalenes. The influence of
the substitution pattern on the SAVw values is less pronounced. Of
less importance for the dissolving process are the electrostatic and
dispersive interactions occurring between the solvent and solute
after formation of the caves. For chloronaphthalenes, those factors
become especially important when comparing each other con-
geners with the same number of chlorine substituents. The PLS
model utilizes not only descriptors related to the cavitation (SASw,
Et), but also those linked to the dispersive (DEw, TNEw) and electro-
static interactions (nClp1, HOMO, Hard). One can be surprised, why
nClp1, HOMO and Hard in this context are interpreted as descrip-
tors of the electrostatic interactions. The explanation is relatively
simple. Differences in electron density on particular atoms are
responsible for variations of the electrostatic interactions between
the solvent and various congeners. On the other hand, it is obvi-
ous that the differences in the electron density for the congeners
having the same number of chlorine atoms result from various sub-
stitution patterns. Therefore, when investigating congeners with
the same number of chlorine substituents, the substitution pattern
seems to be the most important parameter governing the observed
differences in their solubility. High concentration of the chlorine
substituents on one aromatic ring (denoted by nClp1), because of
their electron withdrawing properties, favors formation of a small
dipole moment in the molecule. Also the energy of the highest occu-

pied molecular orbital (HOMO) and the molecular hardness (Hard)
in this particular case were used for simple numerical description of
the chlorine substitution pattern rather than the electron transfer
processes (direct link to HOMO). As it was proved in our previ-
ous studies [2], beta-substituted chloronaphthalene congeners are
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Fig. 1. The Williams plots describing the applicability domains of the models developed in this study: (a) MLR model for Set 1; (b) PLS model for Set 1; and (c) PLS model for
Set 2.

Fig. 2. The correlations between experimental (observed) and predicted values of water solubility for the models developed in this study: (a) MLR model for Set 1; (b) PLS
model for Set 1; and (c) PLS model for Set 2.
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Table 4
Experimental and predicted values of water solubility (S) for chloronaphthalene congeners (�g/dm3).

#CN CN congener Exp. log Sa Predicted log S

WSKOWIN COSMO-RS QSPRb

MLR (Set 1) PLS (Set 1) PLS (Set 2)

1 1-Chloronaphthalene 3.46T 4.49 4.10 3.22 3.38 3.07
2 2-Chloronaphthalene 2.97V 4.42 4.19 3.20 3.21 3.02
3 1,2-Dichloronaphthalene 2.14T 3.88 3.58 2.61 2.40 2.53
4 1,3-Dichloronaphthalene 2.45 2.28 2.41
5 1,4-Dichloronaphthalene 2.50V 3.68 3.39 2.55 2.45 2.44
6 1,5-Dichloronaphthalene 2.60T 3.67 3.40 2.53 2.71 2.42
7 1,6-Dichloronaphthalene 2.45 2.54 2.36
8 1,7-Dichloronaphthalene 2.37T 3.76 3.48 2.44 2.58 2.33
9 1,8-Dichloronaphthalene 2.77V 3.76 3.79 2.64 2.93 2.32

10 2,3-Dichloronaphthalene 2.94T 3.80 3.69 2.35 2.25 2.45
11 2,6-Dichloronaphthalene 2.35 2.43 2.23
12 2,7-Dichloronaphthalene 2.34 2.35 2.33
13 1,2,3-Trichloronaphthalene 1.82 1.47 1.94
14 1,2,4-Trichloronaphthalene 1.81 1.49 1.89
15 1,2,5-Trichloronaphthalene 1.81 1.74 1.86
16 1,2,6-Trichloronaphthalene 1.71 1.61 1.75
17 1,2,7-Trichloronaphthalene 1.72 1.59 1.80
18 1,2,8-Trichloronaphthalene 1.91 1.99 1.77
19 1,3,5-Trichloronaphthalene 1.71 1.64 1.73
20 1,3,6-Trichloronaphthalene 1.61 1.44 1.71
21 1,3,7-Trichloronaphthalene 1.81T 2.91 2.76 1.56 1.52 1.61
22 1,3,8-Trichloronaphthalene 1.79 1.83 1.67
23 1,4,5-Trichloronaphthalene 1.90 2.00 1.73
24 1,4,6-Trichloronaphthalene 1.71 1.66 1.69
25 1,6,7-Trichloronaphthalene 1.70 1.90 1.67
26 2,3,6-Trichloronaphthalene 1.60 1.45 1.69
27 1,2,3,4-Tetrachloronaphthalene 0.62T 2.37 2.18 1.10 0.64 1.26
28 1,2,3,5-Tetrachloronaphthalene 0.57V 2.36 2.12 1.08 0.84 1.25
29 1,2,3,6-Tetrachloronaphthalene 0.97 0.66 1.19
30 1,2,3,7-Tetrachloronaphthalene 0.98 0.70 1.15
31 1,2,3,8-Tetrachloronaphthalene 1.18 1.06 1.18
32 1,2,4,5-Tetrachloronaphthalene 1.16 1.04 1.17
33 1,2,4,6-Tetrachloronaphthalene 0.97 0.73 1.10
34 1,2,4,7-Tetrachloronaphthalene 0.97 0.69 1.15
35 1,2,4,8-Tetrachloronaphthalene 1.18 1.06 1.16
36 1,2,5,6-Tetrachloronaphthalene 1.07 1.08 1.20
37 1,2,5,7-Tetrachloronaphthalene 0.97 0.95 1.12
38 1,2,5,8-Tetrachloronaphthalene 1.18 1.33 1.09
39 1,2,6,7-Tetrachloronaphthalene 0.96 0.95 1.10
40 1,2,6,8-Tetrachloronaphthalene 1.06 1.19 1.01
41 1,2,7,8-Tetrachloronaphthalene 1.19 1.31 1.16
42 1,3,5,7-Tetrachloronaphthalene 0.60T 2.00 1.73 0.88 0.90 0.92
43 1,3,5,8-Tetrachloronaphthalene 0.91T 2.37 2.18 1.05 1.21 0.98
44 1,3,6,7-Tetrachloronaphthalene 0.86 0.84 0.97
45 1,3,6,8-Tetrachloronaphthalene 0.94 1.01 0.95
46 1,4,5,8-Tetrachloronaphthalene 1.26 1.54 1.00
47 1,4,6,7-Tetrachloronaphthalene 0.91V 2.32 2.02 0.96 1.02 1.01
48 2,3,6,7-Tetrachloronaphthalene 0.86 0.79 1.01
49 1,2,3,4,5-Pentachloronaphthalene 0.57 0.27 0.70
50 1,2,3,4,6-Pentachloronaphthalene 0.35 −0.07 0.64
51 1,2,3,5,6-Pentachloronaphthalene 0.34 0.17 0.60
52 1,2,3,5,7-Pentachloronaphthalene 0.24 0.09 0.45
53 1,2,3,5,8-Pentachloronaphthalene 0.44 0.43 0.48
54 1,2,3,6,7-Pentachloronaphthalene 0.23 0.04 0.48
55 1,2,3,6,8-Pentachloronaphthalene 0.33 0.26 0.43
56 1,2,3,7,8-Pentachloronaphthalene 0.46 0.41 0.53
57 1,2,4,5,6-Pentachloronaphthalene 0.44 0.39 0.51
58 1,2,4,5,7-Pentachloronaphthalene 0.32 0.25 0.42
59 1,2,4,5,8-Pentachloronaphthalene 0.53 0.61 0.44
60 1,2,4,6,7-Pentachloronaphthalene 0.22 0.08 0.42
61 1,2,4,6,8-Pentachloronaphthalene 0.33 0.29 0.38
62 1,2,4,7,8-Pentachloronaphthalene 0.46 0.41 0.54
63 1,2,3,4,5,6-Heksachloronaphthalene −0.15 −0.37 0.05
64 1,2,3,4,5,7-Heksachloronaphthalene −0.28 −0.50 −0.08
65 1,2,3,4,5,8-Heksachloronaphthalene −0.06 −0.14 −0.03
66 1,2,3,4,6,7-Heksachloronaphthalene −0.40 −0.70 −0.06
67 1,2,3,5,6,7-Heksachloronaphthalene −0.40 −0.43 −0.11
68 1,2,3,5,6,8-Heksachloronaphthalene −0.30 −0.23 −0.16
69 1,2,3,5,7,8-Heksachloronaphthalene −0.28 −0.20 −0.17
70 1,2,3,6,7,8-Heksachloronaphthalene −0.28 −0.23 −0.15
71 1,2,4,5,6,8-Heksachloronaphthalene −0.19 −0.03 −0.20
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Table 4 ( Continued )

#CN CN congener Exp. log Sa Predicted log S

WSKOWIN COSMO-RS QSPRb

MLR (Set 1) PLS (Set 1) PLS (Set 2)

72 1,2,4,5,7,8-Heksachloronaphthalene −0.18 −0.03 −0.18
73 1,2,3,4,5,6,7-Heptachloronaphthalene −0.89 −0.98 −0.65
74 1,2,3,4,5,6,8-Heptachloronaphthalene −0.77 −0.78 −0.67
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molecule, can differ by ability to be transported in the aqueous sys-
tems and bioaccumulated by aquatic organisms [4]. Because of that
estimating environmental risk of a congeneric set of pollutants it is
usually very important to have data on solubility determined for all
possible congeners.
5 1,2,3,4,5,6,7,8-Oktachloronaphthalene −1.10T 0.9

Training subset, VValidation subset.
a Experimental data taken from [6].
b This study.

haracterized by higher values of ionization potential (negative
alue of HOMO) that the other compounds containing the same
umber of chlorine atoms. Summarizing, the predictive ability (of
he PLS model) increased when we included descriptors not only
elated to the cavitation, but also those involving the other types of
he solute–solvent interactions. However, the influence of the cav-
tation is more vital than the influence of the other phenomena.
herefore, taking into account the rule of making the algorithm as
imple as possible, we could recommend the simplest model (MLR),
hich uses only one descriptor for further predictions.

It is interesting that, in this particular case, the values of RMSEP
re lower than RMSECV. This unusual situation probably resulted
rom very limited size of the validation set. However, we decided
o use even a small number of validation compounds in order to
xternally confirm predictive ability of the models.

In this study we initially assumed that development of the QSPR
odels with use of the small training set of similar compounds

hould be more accurate for congeners that application of the mod-
ls with wider applicability domains. This assumption has been
onfirmed by the results of comparison between both PLS models:
he model for Set 1 and Set 2. As we expected, the predictions by
he model developed with larger and more diversified structural
omain (Set 2) are noticeable worse that the predictions by the
odel calibrated only on PCNs (Set 1). When designing the QSPRs

or congeneric sets, there is often a dilemma, which strategy of mod-
ling to choose. Indeed, is it better to have a model based on only
0 congeners, even if the ratio of descriptors-to-compounds is rel-
tively small or is it better to have a model calibrated on greater
umber, but not of such structurally similar compounds? As usually,
here is no one unambiguous answer. Everything should depend
n the purpose of modeling. When the precision of the results is
ery important, we recommend to reduce the model’s domain and
o make predictions based on the small set of congeners. How-
ver, when the model should be predictive not only for one class
f compounds (i.e., chloronaphthalenes), but also for other species
i.e., dibenzofurans, dibenzo-p-dioxins) the second strategy must
e applied. Obviously, the second strategy is the only one possibility,
hen the number of congeners from one class with available exper-

mental data is insufficient to construct even a simple predictive
odel.

An association of particular congeners from the training and
alidation subsets with the models’ applicability domains was con-
rmed by use of the Williams plots (Fig. 1). We have not observed

he presence of outliers. But, when comparing both models for Set
, the high influence of CN#75 on the MLR model can be noticed. For
ll the models also a strong linear correlation between the experi-
entally obtained and the predicted values of water solubility was

bserved (Fig. 2). In this way the OECD recommendations of the
SAR’s quality have been fulfilled.
.3. Water solubility of the individual CN congeners

Before the prediction of water solubility for the remaining 60
ongeners, we verified if they were situated inside of the appli-
0.05 −1.94 −1.24 −1.21

cability domains of the three models by calculating the leverage
values (Fig. 3). Even the most influencing congeners (CN nos. 73
and 74) had the leverage values significantly lower than the critical
thresholds.

Based on the results obtained for PCNs (Table 4) some envi-
ronmentally related conclusions can be made. Persistent Organic
Pollutants (POPs) contaminating the natural environment may
exist in aquatic ecosystems in different forms—dissolved in water,
absorbed on various organic particles or accumulated in tissues
of numerous aquatic species. Lower chlorinated CN congeners
show the highest water solubility and this fact influences their
fate, mobility and physical form in the aqueous environment.
When comparing the results to the other POPs we hypothesized
that mono- and dichloronaphthalenes, due to their relatively high
water solubility, should be generally present in the pelagial water,
while tri- and tetra-chloronaphthalenes could exist in the pela-
gial water as long as they can be absorbed on suspended organic
particles. They might also be bioaccumulated due to their high
lipophilicity [3]. Penta- and hexa-chloronaphthalenes are much less
soluble in water and much more lipophilic [3]. Thus, they should
be mainly accumulated in biota. Chloronaphthalenes containing
seven or eight chlorine atoms are almost insoluble in water and
hardly bioaccumulated; they would be deposited in sediments or
absorbed on organic particles. Such hypothesis should be further
verified by measuring concentration of the congeners in the com-
partments (water, organisms, and sediments) of water ecosystems
(lakes, rivers, sea). It is also worth noting that the congeneric com-
pounds, even containing the same number of chlorine atoms in the
Fig. 3. The plot of the leverage values for chloronaphthalenes neither included in
the training nor in the validation subsets.



ous M

3

i
c
i
o
T
d
r
v
d
v
l
0

W
t
u
(
s
t
a
T
a
R

t
s
R

R
s
t
e
d
v
t
H
i
a
a
a
v
c
v

t
t
i
e
p
o
w
t
r
d
p
v
P
t

4

f

T. Puzyn et al. / Journal of Hazard

.4. Reference calculations and comparisons

Many previously published QSPR models of water solubil-
ty were trained on the large sets of structurally differentiated
ompounds. Those strategies usually lead to the models, character-
zed by wide applicability domains. A comprehensive comparison
f the models could be found in a review by Delaney [32].
en QSPR models discussed by the author were obtained using
ifferent chemometric methods, including MLR and artificial neu-
al networks techniques. The number of the model parameters
aried between 3 and 118 including a wide spectrum of the two-
imensional and three-dimensional molecular descriptors. The
alues of the standard error of prediction for these models calcu-
ated for 21 common chemicals (validation set) ranged between
.55 and 0.91 log units.

Similar or even better predictive ability was reported for the
SKOWIN program. We used this model as a ‘golden standard’ for

he reference calculations. We calculated the values of water sol-
bility for those 15 congeners, for which experimental data exist
Table 4). To be as much fair as possible in the comparison, we
plit these compounds into two groups: a group corresponding to
he training subset used in the QSPR models for Set 1 (n = 10) and
group corresponding to the external validation subset (nval = 5).

hen, we calculated the root mean square errors of prediction sep-
rately for these two groups. They were RMSEP10

WSKOWIN = 1.44 and
MSEP5

WSKOWIN = 1.40 (log units), respectively.
In the same way, we performed additional reference calcula-

ions with use of the COSMO-RS model. The values of the root mean
quare errors of prediction by COSMO-RS (for n = 5 and n = 10) were
MSEP5

COSMO-RS = 1.78 and RMSEP10
COSMO-RS = 1.12 (log units).

When we put together the values of RMSEP5
WSKOWIN,

MSEP5
COSMO-RS and the RMSEPs for the models presented in this

tudy, we observed up to two times better predictive ability of
he QSPRs in comparison to the WSKOWIN and COSMO-RS mod-
ls. Moreover, because only data for 5 compounds were used, we
ecided to compare also the root mean square errors of cross-
alidated data (RMSECV) to the RMSEP10

WSKOWIN. In that case also
he QSPR models were characterized by significantly lower errors.
owever, the second comparison should be treated with care, since,

n fact, we put together data from external (RMSEP10
WSKOWIN)

nd internal (RMSECV) validation. Although this did not provide
direct comparison between the values predicted from WSKOWIN
nd COSMO-RS with the fitted values from QSPR (but the cross-
alidated residuals), the external validation is always a stronger
riterion than the internal predictive ability measured by the cross-
alidated residuals.

In our study we tried to restrict the applicability domain of
he models as much as possible. By decreasing ‘universalism’ of
he models it was possible to improve their predictive character-
stics. However, it is worth noting that even the PLS model for the
xtended domain (Set 2) predicts water solubility of PCNs more
recisely than any of the standard models mentioned above. This
bservation does not mean that the ‘golden standard’ models are
rong. We have no enough data to make such a conclusion. On con-

rary, this excellent models are very useful nowadays, when we have
oughly 100 000 different chemicals that are commercially pro-
uced and for which we are in the need of a sound risk assessment
rocedure. However, we have demonstrated that whenever even a
ery limited data set is available for a congeneric family (such as for
CNs) and whenever very reliable data are needed, development of
he local QSPRs instead of using the ‘golden standards’ is justified.
. Conclusions

This study provides the values of water solubility predicted
or 75 chloronaphthalene congeners by the local QSPR mod-

[
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els. The values calculated from the most recommended, simplest
MLR model (for Set 1) varied from 0.01 to 1660 �g dm−3

(2.85 × 10−11–1.02 × 10−5 mol dm−3), depending on the number of
chlorine atoms present in the molecule and the substitution pat-
tern. In this way, significant gaps in the environmentally relevant
physicochemical data on PCNs are now bridged. In further works
it will be possible to use this data for modeling of environmental
transport and fate not only of selected congeners, but also for all
chloronaphthalenes.

The molecular parameters calculated at the Density Functional
Theory level with the 6-311++G(d,p) basis set were able to success-
fully describe differences in the estimated property, even among
very similar compounds (congeners). This was impossible, when
only semi-empirical descriptors were used. In addition, due to
low cost of DFT computations in comparison to such ‘classic’ ab
inito methods with comparable accuracy, as MP2, the presented
approach is strongly recommended.

The errors of prediction by the presented local QSPRs (for Set 1)
were significantly lower than those of more general QSPRs (for Set
2) as well as of WSKOWIN and COSMO-RS ‘golden standard’ mod-
els. Although there were not enough experimental data for more
sophisticated comparisons and general conclusions, it was demon-
strated that whenever even a very limited data set is available and
more reliable values of properties are required the development of
such local QSPRs is justified.
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